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The reflection from an ellipsoid of a strong shock wave (with uniform parameters behind the wave) moving 
along one axis of the ellipse is considered. Viscosity and thermal conductivity of the gas are not considered. 
A solution is sought in the vicinity of the critical point using the small parameter method [ 1 ]. The nonlinear 
differential equations for the dimensionless components of the gas velocity in this region are solved by the 
method of separation of variables with the additional condition of [2]. Analytical expressions are found for 
the flow parameters, which for the cases of an elliptical cylinder and ellipsoid of revolution coincide with the 
corresponding expressions obtained previously in [2]. 

Using the approximations of [3], we write the equations of continuity, and conservation of energy and momentum 
of [4], describing the gas flow behind a shock wave reflected from an ellipsoid in the vicinity of the critical point (0 << 1) 
in the form 
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where P / P 3  -~ po (x ,  tx) q -  O2p~ t~, ~O) -t- .  �9 .; R / R 3  = 9o(x,  t l )  q -  029~ ep) n t-. . .; I t / l t a  _4. h0(x, tx) -1- O2h~ t l ,  ~0) 

+ . . . ;  VT/a3 = uo(z, tO + O~u~ tl, q))+ . . . ;  Vo /a3 = Ovo(Z, tx~ ~) + . . .; V~la~ = Ov~(zj h, c O ) + . . . ;  r =  

c(l -4- x); t = t tc laa ; the subscript "3" denotes constant gas parameters behind a shock wave reflected from a plane parallel 

to the wave front; a~ -~ 7 s P s I R 3 ;  t t  = ~(7 - -  I ) - * P I R  is the enthalpy; P is the pressure; R is the density; g,, V0, V, 

are the components of  the gas velocity in a spherical coordinate system; t is time; T is the effective adiabatic index; a, b, 
and c are the semiaxes of the ellipse (the shock wave moves along the semiaxis c); 0 is the angle in the spherical coordinate 
system. 

In the vicinity of the critical point the motion of the reflected shock wave front can be written in the form 
F ( r  t, O, % t) ~ r I - -  c - -  ~l ! t )  - -  O'~8~(qJ, t)  - -  . . . = O.  Then the velocity of the reflected wave D can be written in the 
form [4] 

D = - -  I Ve 1-1 F'  (t) ---- 8~ (t) (2) 

(the prime denotes differentiation with respect to the argument within parentheses, or that denoted by the subscript). 

Upon passage through the reflected shock wave front the projections of the velocity - -  uanz ~ - -  u2nr -4- u~0na of 
the gas ahead of the reflected front in the directions of the mutually perpendicular vectors n I ,~ 20ri'lS~n, + no and 
na ~ 0ri'X(8~)~n, + n~, lying in a plane tangent to this front, do not change. The component normal to the reflected front 
g a s  --" D - -  (rib,: --u~nz) ahead of the front is related to the normal component V n of the gas velocity behind the front 
by the expression [4] 

Fn2R2 ---- FnR~ (3) 
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where the subscript 2 denotes gas parameters ahead of  the reflected front, and n b ----- [vFl-Xv F is the normal to the 
reflected front. Thus, on the reflected front the gas velocity is defined by the equation V ---- Vrnr + Veno + Vr162 = (D 

0 �9 V~) n b + 0u~ (t  - -  28~ n,  - -  Or; ~ u~ (8~)~n,, whence it follows that 

V, = D - -  V~, Vo = - -  2 (D - -  V,~) 08~/r, + Ot~ (1 - -  26~/r,), (4) 
= 0 �9 V,  - -  Or7' (D - -  Vn + us) ( 8 , ) , .  

Then, from Eqs. (2), (3), (4), we obtain 

uo = xi (t,) (i - -  P~/Po) - -  usapsJPo, vo = --28~ + u,a (t - -  2~,~ (5) 
r--1 ~0 t , ,  = - + . )  , ( ,), ,  

where xx ----5x/c; P~ -~ B~lRa; va~ = uslaa. 

In the plane ~ = const the angle a between the normal to the line of  intersection of  this plane with the surface of  
the ellipsoid and the z-axis is connected with the angle 0 by the expression o~ ~ cS(a - s  cos s (p + b -s  sin s (P) 0.  In the same 
plane, the angle fl between the normal to the line of  intersection of  this plane with the reflected front and the z-axis is 
defined by the relationship [4] sin ~ = IvFI-aF'(s) ~ 0 [ t - -2~~162  t, a, b, c)/rx] , where s = r~ sin 0. Assuming that in the 
vicinity of  the critical point a ~ ~, we obtain 

( t - -  2~ / r , )  = c' ( a - '  cos' r + b-S sin' ~). (6 )  

The boundary condition on the body and the initial conditions for t = 0, where the incident shock wave reaches the 
critical point 0 = 0, x = 0 are obtained in the same manner as in [3]: 

Uo(X = 0) = o; (7) 
p 

x , = O ,  x x ( t l ) = W / a s = e ,  P o = P o = h o = i ,  u o = 0 ,  D = W ,  (8 )  

where W is the velocity of  the shock wave reflected from a plane parallel to its front. 

We will now assume that for a strong shock wave 3' -+ 1 [3]. Then, in analogy to [1, 3], a solution may be sought 
in the form 

P o = t + e 2 P +  . . . .  P o = l + e ~ P +  . . . .  h 0 = l + e S h + . . . , ,  

u o = e u + . . . ,  vo---- v e - ' + . . . ,  

V 1 ~--- qS-'  "Jr" . . . .  X ----- S ~ ,  t I = e'r. 

(9) 

Now Eq. (1) takes on the form 
0.  Oq Ov Ov Ov s 
a~ + 2 v + - - ~ - = 0 ,  --~-+u-~-~-~ + v s + q - ~ - - - q  = 0 ,  (10) 

aq ~- u oq •  oq ) 
0r ' ~ , - ~ -  = 0 ;  

0,  Ou i Op a--Y + u w  +-~~ -~"  = 0 ;  (11) 

Oh Oh a'-Y + u-~-~ = 0. (12) 

Using the well-known relationship between gas parameters in a strong shock wave, we write the boundary conditions 
with consideration of  Eq. (9), where 8 ! ---- 2(?-- t)  (3? - -  t) -1 [3 ]. Thus, boundary conditions (5) on the reflected front 
with consideration of  Eq. (6), the conditions on the body Eq. (7), and the initial conditions Eq. (8) can be written in the 
form 

p/2 = u = h = ~ ('0 - -  t ,  v = (a -s  cos ~ (p + b -~ sin ~ q~) Ec ~, (13) 

q =  sin2tp (b -2 - -  a -2) EcV2, E = eusa; 

u(~ = O) = 0; (14) 

~, (x = 0)---- 0, ~ ( ~ = 0 ) = t .  (15) 

From Eqs. (10), (13) it follows that at q = sin 2(p'ql([~ "0/2, 

_~_ _ ~  au (16) o% o~u ~ [ 9 .  V _  q'~ = 0, + u - q' -W~ - 0; 
~ 0 ~  + u  a~ 2 2 k ~  T 

~ u  
= = - ( b - '  + a - , ) ,  q ,  (g = = (b - s -  (17) 
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We will seek a solut ion in the form u = q)(~)r( 'r) ,  qz = O~(~)Tx(x) �9 Subst i tut ing these expressions in gq.  (16), we 
note  that  at T = T~ the variables are separable. Then  we have 

T ' I T :  = ~,, q)cI)~/O~ - -  cI)' -l- ~, = 0, - -  LO' - -  0 r  q- (0 ')~/2_+ (I)~12 = 0. (18) 

From Eq. (18) we obta in  an Abel  equat ion of  the second sort  [5] 

3~,k -I- k'kcl) -- k" - -  2L 2 -~- cxcl) = 0. (19) 

Transforming Eq. (19) in to  an Abel  equat ion of  the first sort, and knowing its special solut ion,  we obta in  a solut ion 
of  Eq. (19) in the form 

(20) 
k 2% z - -  czO 2L ~ - -  r \ 2c s q-- 2L czca - -  c 1 a ] 

where k(O) -= O ' ;  c1,,.,3 are constants.  

F rom Eq. (18) it follows that  

where c a is a constant .  

T = (c~ - -  L~)-x~ (21) 

In view of  the nonl inear i ty  of  Eqs. (16) their solut ion can be represented in the form of  sums Zu~ and Y.q~x given 
the condi t ion  that  ~ 

E ( 4 - ~ ' )  - z - 1  c4~c4~ M~ --  0, (22) 
~,n--fim 

E --1 --1 
c4,,,c4,~ [M,,M,, ,  + (4- M0,) (4-  Mo,n)l = 0, 

~, nr 

where M takes on either the value 2X or X', while M 0 is ei ther zero or k '  (X' = ( - -  c~c;XcZ~)i/'). 

Condi t ion  (22) was obta ined  from Eq. (16) at ~ = 0 and r = 0. Considering the n u m b e r  of  condi t ions  imposed on 
the eigenvalues X, we l imit  ourselves to the case in which the set X consists of  no t  more than three values: X~, -X~, X 3 
(the remaining combinat ions  do no t  satisfy the condi t ions  of the problem).  The sign of  X corresponds to the sign in the 
equat ion 

091 = 4- [(It - -  2L) z - -  2clCb] V~, (23) 

obta ined from Eqs. (18), (19). 
co ~-  ~ I c 4 .  

Then from Eqs. (14), (20) it  follows that  

kl----- (2cn@1 q- c ~ )  I/s, (~z = cn  (exp c~  - -  1) s exp ( - -  e5~)/(2c~); (24) 

k s ----- ~ - -  casq)J(2Z;), r z = 2w~ [1 - -  exp ( - -  v~0~Zl~/2)] c4sv71, (25) 

where c s is a constant ;  v ~ cJc , ;  k l = t c  (kl); ks ---- k ( ~ ) .  

Expressions for k 3 and ~3 are obtained from Eq. (25) by replacing the subscript 2 by 3. F rom Eqs. (18), (23), 
(24), and (25) it follows that  

co~ = ~r q,~ = - ~ exp ( -  ,,50~.7~/2), '~,s -= ~.; ~':p ( -  "~;1~/2),  (26)  

, ~ h ~  e11 = e~ ( ~ ) ;  -i, = *i (~) ... 

Thus, from Eqs. (21), (24), (25), (26) we obtain 

~d 1 20)22 [t[ --OXp (-- u ] 20)2 [J. - - exp  (-- u 1. 
u = 2c---~" (exp c~  - -  t) 2 exp ( - -  c5~ ) q- ~z (1 --  %~) : q- ~3 (t -- %x) ' (27) 

%'1 %exp (-- V2',~-1,~/2 ') O) 3 exp (-- V30)71~/2) 
qz = ~ (exp c5~ - -  t) ~ exp ( - -  ca~ ) - -  1 -- ~o._z " + t --  %~ '" (28) 

F rom Eqs. (17), (22) at ~.1(~ = 0) = 0 we obta in  (ol --~ 0, ~% = - - E d / b  2, o~3 = - - E c V a  2, 

Using Eqs. (16), (17) we find 

"v 1 = --2E2caa-2b-2,. v2 = 2~2c5, v~ = --2co3c5~ c5 ---- - -Ec2(b -~- - -  a-2) .  
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Fig. 1 

The value of  the dimensionless pressure p is found from Eq. (11) by differentiation of  Eq. (27) and subsequent 
integration. The constant which we obtain in this manner is defined with the aid of  the corresponding boundary condition 
(13). The dimensionless enthalpy is determined from Eq. (12) in the same manner as in [3]. 

The expressions obtained for the flow parameters at a = b coincide with known expressions [2] for an ellipsoid of  
revolution, while for a ~ ~ or b ~ ~,  they coincide with corresponding expressions [2] for an elliptical cylinder. 

The method employed for solving the problem considered herein may also be used for solution of  similar problems 
in magnetic hydrodynamics [6]. 

Figure 1 shows the quantity Ap = (P( t )  - -  p ( e o ) )  (P(0) - -  P(eo)) -1 as a function of  dimensionless time t 2 = U 1 t/c 
(where U 1 is the velocity of  the incident shock wave) at the critical point (~ = 0, 0 = 0) for a circular cylinder (curve 1) and for 
a sphere (curve 2). The dependence of  Ap upon 3' in the range considered is weak. 

As follows from Eq. (27) at a = b or a--,- e~ u(~ = 0, x) = u ( e ~ b - 2 E O  ---- l(c2b-~t2) . Then it follows from Eq. (11) 
that p = p ( e ~ b - Z t ~ )  . Thus, for an elliptical cylinder and an ellipsoid of  revolution the quantity Ap(d~b-at~) is obtained from 
the curves 1, 2 by a corresponding expansion or compression along the t 2-axis by a factor of  c 2/b:  . 
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